
初一数学上册教学计划
时间过得真快,总在不经意间流逝,我们的工作又将在忙碌中充实着,在喜悦中收获着,现在就让我们好好地规划一下吧。计划怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的初一数学上册教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。
初一数学上册教学计划1一、学生情况分析
本期自己担任七年级数学,该班共有学生46人。七年级学生往往延用小学的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。
二、教材及课标分析
第一章 有理数
1.通过实际例子,感受引入负数的必要性.会用正负数表示实际问题中的数量.
2.理解有理数的意义,能用数轴上的点表示有理数.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小.通过上述内容的学习,体会从数与形两方面考虑问题的方法.
3.掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算.能运用有理数的运算解决简单的问题.
4.理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示.了解近似数与有效数字的概念.
第二章 一元一次方程
1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.
2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.
3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.
4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想.
5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.
第三章 图形认识初步
1.通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的'辩证关系.
2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系.在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉.
3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段.
4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质质,会画一个角等于已知角(尺规作图).
5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.
6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.
7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.
第四章 数据的收集与整理
1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息.
2.初步感受抽样的必要性,初步体会用样本估计总体的思想.
3.掌握划记法,会用表格整理数据.
4.进一步体会条形图、扇形图和折线图在描述数据中的作用.
5.能用计算器处理简单统计数据,进一步体会计算器处理运算的优越性.
6.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.
三、进度安排
1.1正数和负数 2课时
1.2有理数 4课时
1.3有理数的加减法 4课时
1.4有理数的乘除法 5课时
1.5有理数的乘方 4课时
小结 2课时
2.1从算式到方程 4课时
2.2从古老的代数说起——一元一次方程的讨论(1) 4课时
2.3从“买布问题”说起——一元一次方程的讨论(2) 4课时
2.4再探实际问题和一元一次方程 4课时
小结 2课时
3.1多姿多彩的图形 4课时
3.2直线、射线、线段 2课时
3.3角的度量 3课时
3.4角的比较和运算 3课时
小结 2课时
4.1喜爱哪种动物的同学最多——全面调查举例 2课时
4.2调查中小学生的视力情况——全面调查举例 2课时
4.3课题学习 1课时
小结 2课时
四、奋斗目标
达到学校要求的目标,进入同年级同学科前列。
五、具体措施
1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。
2、把握好与前两个阶段的衔接,把握好教学要求,不要随意拨高。
……此处隐藏20786个字……形的初步认识过程中,掌握基本的识图与作图技能,认识最基本的图形――点和线,进而认识角、相交线和平行线,掌握与此相关的基本推理技能;学生通过经历收集、整理、描述、分析数据,做出判断并进行交流活动的全过程,体会数据的作用,掌握基本的数据处理技能,形成对统计与概率的初步认识。
2、过程与方法(数学思考与解决问题)目标:
①学会能对具体情境中较大的数字信息做出合理的解释和推断,能用有理数、代数式刻划事物间的相互关系。
②学生通过在探索图形(点、线、角、相交线、平行线)的性质、图形的变换以及平面图形与窨几何体的相互转换(三视图、展开图)等到活动过程中,初步建立空间观念,发展几何直觉;能在说理的推证过程中,体会证明的必要性,发展初步的演绎推理能力。
③学生能在数据的收集与表示中,学会收集、选择、处理数学信息,做出合理的推断或大胆的猜测,并能用实例进行检验,从而增加可信度或否定。
④学会能结合生活实际的具体情境发现并提出数学问题。
⑤学会从不同的角度解决问题的方法,有效地解决问题,尝试对比评价不同方法之间的差异,并学会对解决问题过程的反思,从而获得解决问题的经验。
⑥学会在解决问题的过程中与他人合作学习,养成独立思考与合作交流的习惯。
3、情感与态度目标:
①学生通过初步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,形成用数学的意识。
②学会敢于面对数学活动中的困难,勇于运用所学数学知识克服困难并解决问题,获得成功的体验,从而树立学好数学的自信心。③学生通过学习,体验到数学中的有理数、代数式和几何图形是有效地描述现实世界的重要手段,认识到这些数学知识是解决实际问题和进行交流的重要工具从而了解数学对促进社会进步和发展人类理性精神的作用。
④初步认识到数学活动是一个充满观察、实验、归纳、类比、推断可以获得数学猜想的探索过程,体验到数学活动充满着创造性,感受证明的必要性、证明过程的严谨性和结论的确定性。
⑤学会在独立思考的基础上,积极参与学习讨论,敢于发表自己的观点,并能虚心听取、尊重与理解他人的见解,从而学会在交流中提高自己,形成良好的思维品质。
⑥通过阅读学习,了解我国数学家在数学上的杰出贡献,从而增强民族的`自豪感,增强爱国主义。
上述三维目标是一个密切联系的有机整体,它们是相互联系的和相互作用的。过程与方法目标的实现,情感与态度目标的实现,离不开知识与技能的学习,否则它们的实现将是无源之水、无本之木;同时,知识与技能的学习必须以有利于过程与方法目标、情感与态度目标的实现为前提。
六、具体措施:
1、做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。
3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。
4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。
5、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
6、用哲理的高度,站在系统的高度,思如泉涌的精神状态,八方联系,浑然一体的学习方式,使学生学得松。成绩好,发展学生的素质。
初一数学上册教学计划15一、教学目标
知识与技能:
1.掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力.
2.了解分类的标准与分类结果的相关性,初步了解集合的含义。
过程与方法:
1.经历有理数进行分类,发展学生的分类意识,体验分类是数学上常用的处理问题的方法.
2.经历从整数和分数扩充到有理数,了解人类对数的认识是不断发展的.
情感态度与价值观:
1. 通过了解数的扩充,体会数的扩充对人类发展的作用.
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.
二、重点难点
重点:
正确理解有理数的概念.
难点:
正确理解分类的标准和按规定的标准进行分类。
三、学情分析
学生在前两节已经学习了正负数,这为本节学习奠定了一定的基础,但有理数的概念不太容易理解,尤其是有理数的分类,因此一定要严格把握教材要求。
四、教学过程设计
教学
环节 问 题 设 计 师 生 活 动 备注
情
境
创
设 通过上两节课的学习,已将数的范围扩大了,你能写出3个不同类的数吗? 创设问题情境,引起学生学习的兴趣.
三名学生板演
自
(1)把他们写出的数进行分类:1,2,3,0,-1,-2,-3,5,8,26,29,-0.5,-150.25
…………
(2)我们是否可以把上述数分为两类?如果可以应分为哪两类?
(3)我们所学过的整数(0除外)能否写成分数的形式?上面的分类标准是什么?我们还可以按其他标准对数进行分类吗?
问题三
到现在为止,我们学过的`书(π除外)都是有理数。你能对我们学过的数进行合理分类吗?
教师提出问题.
学生自己进行分类,教师引导学生观察结果,如果不全,可以补充.
教师提出问题.
学生先看书,回顾思考得出结论:正整数、0、负整数统称为整 数;正分数和负分数统称为分数。
师生共同归纳得出 :
整数可以看成分母为1的分数,有限小数和无限循环小数也都可以写成分数的形式。如:
5可以写成 ;0.3可以写成 ;0. 可以写成
教师提出问题.
学生得出结论:整数和分数统称为有理数。
教师提出问题.
学生独立思考后,小组讨论.
教师在参与讨论时启发学生进行分类,明确分类的基本原则:不重不漏.同时鼓励学生相互补充、完善。
如:按整数和分数分;或按正负数分等。但是要注意遗漏0的问题。
鼓励学生从不同角度入手,寻求解决问题的多种途径.
学生通过概括得出有理数的概念.
关注学生是否能主动参与探究活动,用语言准确地表达自己的观点.
通过对有理数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对有理数的理解.



