五年级数学长方体的体积教案

时间:2025-12-09 19:05:05
五年级数学长方体的体积教案

五年级数学长方体的体积教案

作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?下面是小编精心整理的五年级数学长方体的体积教案,仅供参考,欢迎大家阅读。

  五年级数学长方体的体积教案 篇1

教学目标:

1、 引导学生通过观察长方体的长、宽、高和正方体的棱长,再应用公式计算,解决生活中的实际问题。

2、 通过练习,提高学生解决问题的能力。

教学重点:

应用长方体体积公式计算长方体、正方体的体积。

教学难点:

正确理解体积

教学过程:

一、 复习引入

1、复习上一节课学过的知识。

提问:长方体、正方体的体积计算公式是什么?

2、应用公式计算体积

(1) 一个长方体,长8厘米,宽6厘米,高4厘米,求体积是多少?

(2) 一个正方体,棱长是9厘米,体积是多少?

二、 练习(教材43页练习题)

1、 第5题 要求学生认真读题,注意最后的问题是需要多少升水?计算出来的.体积单位是立方分米,要换算成升。

2、 第6题 要求独立思考练习,与同伴交流,说一说你是怎么想的。

3、 第7题 教师指导练习,结合书上的图想一想,再说一说,最后算一算。提示,正方体的每一条棱长都相等,先确定棱长。

4、 第9题

实践活动(见教材)

三、 作业练习

完成配套练习

  五年级数学长方体的体积教案 篇2

教学要求:

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学重点:长方体、正方体体积公式的推导。

教学用具教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。学生准备:1立方厘米的正方体12个

教学过程

一、创设情境

填空:1、叫做物体的体积。2、常用的体积单位有:、、。3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

431

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的.实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的体积=长×宽×高。

用字母表示:V=a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习--正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:V=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂

五、课后实践

做练习七的第5、7题。

  五年级数学长方体的体积教案 篇3

教学目标

1、结合具体情况和实践活动,操索并掌握长方体,正方体体积计算方法,能正确计算长方体,正方体的体积;

2、在观察、操作、操索的过程中,提高动手操作能力,进一步发展空间观念。

教学重点

掌握长方体,正方体体积的计算方法。

教学难点

正确计算长方体,正方体的体积。

教具准备

长方体,正方体模型。

教师指导与教学过程

学生学习活动过程

设计意图

一、导入:

1、出示长方体

提问:长方形的面积和长和宽有关,长方体的体积可能与什么有关?

二、做一做

1、用相同的小正方体摆出4个不同的长方体,记录它们的长、宽、高并完成下表()

引发学生进行思考,

学生通过观察、分析,发现长方体体积与长、宽高的关系。

2、学生进行思考。

○1学生体会“长、宽相高的时候,越高体积会怎样?”

○2体会“长、高相等时候,越宽,体积会怎样?”

○3体会“宽、高相等的.时候,越长,体积会有什么变化?”

通过实物,引出深题,激发学生操索的兴趣。提出问题引发学生的思考。

让学生通过几次活动,比较,感知长方体二体积与它的长、宽、高有关系,为进一步自己操索长方体体积的计算,打下良好的基础

教师指导与教学过程

学生学习活动过程

设计意图

2、说一说:

学生反馈自己的数据,教师带学生逐一对数据进行分析

三、说一说

1、引导学生分板数据

2、得出长方体体积公式

长方体的体积=长×宽×高

V=a×b×h

四、算一算

1、测量自己的铅笔盒,找出长、宽、高

2、计算铅盒的体积

引导学生观察数据,观察长方体的 ……此处隐藏6360个字……/p>

求长方体体积是多少立方米?

7.尝试解题,迁移推导: (课件演示)

如果缩短长方体的高,它就变成了什么?它的体积是多少?怎样计算?

汇报:正方体体积=棱长×棱长×棱长

出示板书:正方体体积=棱长×棱长×棱长

用v表示体积,字母a表示棱长。字母表达式是?

出示板书:V= a3

练习:13 33 103 0.53 n3 (理解 “ a3 “ 的具体含义)

8.练习:

(3)求正方体体积?

(4)小巧有一个饼干盒,它是一个棱长15cm为正方体,它的体积是多少立方厘米?

9.归纳总结:今天你学到了什么本领?

出示板书:长方体正方体的体积的计算

【这一环节的设计从“动手操作”、“观察分析”、“分组讨论”这样的自主学习方式,让学生充分参与知识的形成过程,让他们对知识点的掌握更完善。结合课件的演示,运用知识迁移把计算长方体体积变成计算长、宽、高相等的长方体体积,很自然地过渡到求正方体的体积。由具体计算感知长方体体积公式类推出正方体体积公式。形式上更多变,学生更感兴趣。】

三、巩固练习(课件)

【巩固练习的练习题设计成表格形式,是从直观转换成了抽象,力求突出重点,解决难点,同时利用多样的题形,把基础认知与创新能力发展紧密结合起来,以达到发展学生思维、形成技能的目的。】

四、动脑拓展:(课件)

把1立方厘米的小正方体装入一个长为4厘米,宽为3厘米,高为2.5厘米的长方体盒子,装满整个盒子最多能装几块?

【这一环节的设计是对本节课知识内容的提升,让学生了解到知识是源于生活,并要回归于生活的,并通过猜想、动手操作验证等环节,激发学生的学习欲望,培养学生的尝试创新意识。】

  五年级数学长方体的体积教案 篇12

目标

在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。

教学及训练

重点

理解底面积。

仪器

教具

投影仪

教学内容和过程

教学札记

一、创设情境

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

二、探索研究

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:V=sh

三、巩固练习

1.做第20页的“练一练”。学生独立做后,学生讲评。

2.补充:一段长方体方铜,长1.2米,横截面是一个边长1厘米的正方形。这段方铜的`体积是多少立方厘米?

首先帮助学生理解:什么是横截面?再让学生做后学生讲评。

3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。

四、课堂

学生今天学习的内容

五、课后练习

做练习三的第11、12、13题。

长方体和正方体统一的体积公式

长方体的体积=底面积×高

正方体的体积=底面积×棱长

长(正)方体的体积=底面积×高,

用字母表示:V=sh

  五年级数学长方体的体积教案 篇13

教学目标

1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

2、能根据有关体积、容积的计算方法,解答实际问题。

教学重点、难点

重难点:

能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

教学过程

一、体积、容积单位之间的化聚、转换练习。

458立方厘米=()立方分米

20.6立方分米=()立方米

7060毫升=()升=()立方分米

130毫升=()立方厘米=()立方分米

800升=()立方分米=()立方米

0.02立方米=()立方分米=()升

二、解决实际问题的应用练习。

1、一个长方体的汽油桶,底面积是18平方分米,高是5分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)

3、在一只底面是边长60厘米的正方形,高是80厘米的长方体纸箱内,装棱长是2分米的立方体纸盒。这只纸箱最多可装这样的纸盒多少个?

4、一个长方体蓄水池,长9.6米,宽4.2米,深2.5米。这个蓄水池占地多少平方米?它最多可蓄水多少立方米?

5、一个长方体水箱,从里面量长80厘米,宽40厘米,高60厘米,箱内水面离箱口10厘米。箱内共有水多少升?如果把这些水倒入另一个底面边长40厘米的长方体水箱内,这时水高多少厘米?

(1)学生独立完成

(2)说说解题思路

第一题:18×5=90(立方分米)90(立方分米)=90升

90×0.74=66.6(千克)

第二题:13×2.7×1.2=42.12(立方米)

42.12×1.3≈55(吨)

第三题:60×60×80=288000(立方厘米)

2分米=20厘米

20×20×20=8000(立方厘米)288000÷8000=36(个)

第四题:9.6×4.2=40.32(平方米)

9.6×4.2×2.5=100.8(立方米)

第五题:80×40×(60-10)=160000(立方厘米)

160000(立方厘米)=160升

160000÷(40×40)=100(厘米)

(3)重点分析第5题

水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的`长方体水箱,求得水的高度。

三、思考题

用一张长50厘米,宽40厘米的长方形铁皮,做一个深10厘米的无盖长方体铁皮盒。要使这个长芳褪铁皮盒的容积最大,可以怎样做?

1、学生独立研究

2、小组讨论

3、教师评议

《五年级数学长方体的体积教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式