
高中数学教案范文
作为一名默默奉献的教育工作者,编写教案是必不可少的,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的高中数学教案范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学教案范文1一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能。
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解。
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。
初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)
(同学议论结果,答案是肯定的)
教师提问:什么是命题?
(学生进行回忆、思考。)
概念总结:对一件事情作出了判断的语句叫做命题。
(教师肯定了同学的回答,并作板书。)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。
(教师利用投影片,和学生讨论以下问题。)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)
(1)什么叫做命题?
可以判断真假的语句叫做命题。
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”。
“或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。
对“或”的理解,可联想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能。
对“且”的理解,可联想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 这两个条件都要满足的意思。
对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
命题可分为简单命题和复合命题。
不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。
(4)命题的表示:用 , , , ,……来表示。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)
我们接触的.复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式。
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的简单命题。
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”。
(如果时间宽裕,可让学生讨论后得出结论。)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)
4.课堂练习:第26页练习1
5.课外作业:第29页习题1.6
高中数学教案范文2一、什么是教学案例
教学案例是真实而又典型且含有问题的事件。简单地说,一个教学案例就是一个包含有疑难问题的实际情境的描述,是一个教学实践过程中的故 ……此处隐藏9184个字……般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解。
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要。教学中应突出点斜式、两点式和一般式三个教学高潮。
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程。根据两个条件运用待定系数法和方程思想求直线方程。
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数)。
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用。教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上。
教学设计示例
直线方程的一般形式
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点。
教学重点、难点:直线方程的一般式。直线与二元一次方程(不同时为0)的对应关系及其证明。
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次。
肯定学生回答,并纠正学生中不规范的表述。再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次。
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”。
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。
学生或独立研究,或合作研究,教师巡视指导。
经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于直线的二元一次方程。
至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式。
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。
启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即
(1)当时,方程可化为
这是表示斜率为、在轴上的截距为的直线。
(2)当时,由于、不同时为0,必有,方程可化为
这表示一条与轴垂直的直线。
因此,得到结论:
在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线。
为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的。
【动画演示】
演示“直线各参数。gsp”文件,体会任何二元一次方程都表示一条直线。
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。
(三)练习巩固、总结提高、板书和作业等环节的设计在此从略



