平行四边形教案

时间:2025-06-22 12:26:08
精选平行四边形教案集锦10篇

精选平行四边形教案集锦10篇

作为一位杰出的老师,时常会需要准备好教案,借助教案可以提高教学质量,收到预期的教学效果。那么优秀的教案是什么样的呢?下面是小编帮大家整理的平行四边形教案10篇,欢迎大家借鉴与参考,希望对大家有所帮助。

平行四边形教案 篇1

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具准备:每个学生准备一个平行四边形。

教学过程:

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

二、导入新课

根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

三、讲授新课

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生平行四边形面积计算公式。

这个长方形的'面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

(四)应用

1、学生自学例1后,教师根据学生提出的问题讲解。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

4、做书上82页2题。

四、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

五、作业

练习十五第1题。

六、板书设计

平行四边形面积的计算

长方形的面积=长×宽 平行四边形的面积=底×高

S=a×hS=ah或S=ah

课后反思:

平行四边形教案 篇2

教学内容:

书本第43—45页的例题,“试一试”和“想想做做”。

教学目标:

1、使学生在具体的活动中认识平行四边形,知道它的基本特征,能正确判断平行四边形;认识平行四边形的高和底,能正确测量和画出它的高。

2、使学生在观察、操作、比较、判断等活动中,经历探索平行四边形的基本特征的过程,进一步积累认识图形的经验,发展空间观念。

3、使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,增强认识平面图形的兴趣。

教学重、难点:

认识平行四边形的特征,画平行四边形的高。

教学准备:

课件、每组准备小棒、钉子板、方格纸、直尺、三角尺

总课时:

28课时

教学过程:

一、生活引入,形成表象

1、教师出示生活情境图,提问:在这些图片中,都有一个共同的平面图形,是什么?(平行四边形)你能找到吗?

指名学生指一指,课件演示。

2、师:生活中,你还在哪些地方能看到平行四边形?

二、合作交流,探究新知

(一)探究平行四边形的'特征

……此处隐藏10050个字……C边AB、AC的中点,求证:DE∥BC且DE=BC.

分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.

方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)

方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.

定义:连接三角形两边中点的线段叫做三角形的`中位线.

【思考】:

(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?

(2)三角形的中位线与第三边有怎样的关系?

(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。

平行四边形教案 篇10

教学内容:

义务教育六年制小学《数学》第九册P64-P66

教学目的:

1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。

2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

4、培养学生自主学习的能力。

教学重点:

掌握平行四边形面积公式。

教学难点:

平行四边形面积公式的推导过程。

教具、学具准备:

1、多媒体计算机及课件;

2、投影仪;

3、硬纸板做成的可拉动的长方形框架;

4、每个学生5张平行四边形硬纸片及剪刀一把。

教学过程:

一、复习导入:

1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

二、质疑引新:

1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

三、引导探求:

(一)、复习铺垫:

1、什么图形是平行四边形呢?

2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

(二)、推导公式:

1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

4、学生实验操作,教师巡视指导。

5、学生交流实验情况:

⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

⑵、有没有不同的剪拼方法?(继续请同学演示)。

⑶、微机演示各种转化方法。

6、归纳总结规律:

沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

⑵、剪拼成的长方形的.长与宽分别与平行四边形的底和高有什么关系?

⑶、剪样成的图形面积怎样计算?得出:

因为:平行四边形的面积=长方形的面积=长×宽=底×高

所以:平行四边形的面积=底×高

(板书平行四边形面积推导过程)

7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

四、巩固练习:

1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

2、练习:

⑴、(微机显示例一)求平行四边形的面积

⑵、判断题(微机显示,强调高是底边上的高)

⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

五、问答总结:

1、通过这节课的学习,你学到了哪些知识?

2、平行四边形面积的计算公式是什么?

3、平行四边形面积公式是如何推导得出的?

六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

《精选平行四边形教案集锦10篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式